B.Sc. IV Semester Degree Examination, April/May - 2019

PHYSICS

Physical Optics and Electricity

PAPER - 4.1

Time: 3 Hours - Maximum Marks: 80

Instructions to Candidates:

- 1. Section -I is compulsory
- 2. Answer any four questions each from Section II and from Section III

SECTION-I

Answer any twelve of the following:

 $(12 \times 1 = 12)$

- A. Choose the correct answer:
 - i) Corpuscular theory of light explains the phenomena of
 - a) Interference

b) Diffraction

c) Polarisation

- d) None of the above
- ii) Area of half period zone is
 - a) Independent of order of zone
- b) Depends on order of zone
- c) Depends on wavelength of light d) Both (a) and (c)
- iii) In case of positive crystals
 - a) $\mu_e > \mu_o$

b) $\mu_e < \mu_o$

c) $\mu_e = \mu_o$

- d). None of these
- iv) Resonance in LCR series occurs when natural frequency
 - a) Is equal to applied frequency
 - b) Is greater than applied frequency
 - c) Is less than applied frequency
 - d) None of the above

P.T.O.

B. Fill in the blanks:

- i) If the path difference between two waves is $\frac{1}{4}$, the corresponding phase difference is ------
- ii) In Fraunhoffer diffraction, the source and screen are effectively at distance from aperture.
- iii) In L-R circuit current ----- the applied emf,
- iv) Optical activity of a substance is measured by its -----

C. State True or False:

- LCR series circuit is called rejector circuit.
- ii) Zone plate has single focal length.
- Coherent sources can be obtained from a single source.

D. Answer in one or two sentences:

- i) Define interference of light.
- ii) What is uniaxial crystal?
- iii) Define rms value of ac current.
- iv) What is band width?

SECTION-II

 $(4 \times 4 = 16)$

- 2. Write a note on wave theory of light.
- 3. Explain in brief Young's double slit experiment.
- 4. Prove that resultant amplitude at a point due to a wave front is equal to half of the amplitude due to first half period zone.
- 5. Give the differences between half wave plate and quarter wave plate.
- 6. Obtain an expression for efficiency of a full wave rectifier.
- 7. Describe how time period and voltage are measured using CRO.

MANAGE STATES

SECTION -III

 $(4 \times 13 = 52)$

- 8. Give the theory of interference by Fresnel's biprism and obtain an expression for a) fringe width.
 - b) A parallel beam of light of wave length 6000×10^{-10} m is incident on thin transparent film of refractive index 1.5 such that the angle of refraction is 45° in the film. Calculate the smallest thickness of the film which will appear dark by reflection.

(9+4)

- 9. a) Give the theory of interference in wedge shaped thin film and explain why broad source is necessary to observe interference in thin film.
 - When a movable mirror of Michelson's interferometer is shifted through 0.0589mm, b) a shift of 200 fringes is observed. What is the wavelength of light used? (9+4)
- What is zone plate? Give the theory of zone plate and obtain an expression for primary 10. a) focal length of zone plate.
 - A parallel beam of light is normally incident upon a plane diffraction grating having b) 14500 lines per inch. The first order spectrum of two bright lines are at a deviation of 19°39' and 19°40'30". Calculate the difference in their wavelength.

(9+4)

- What is optical activity? Explain Fresnel's theory of optical rotation. 11. a)
 - Calculate the thickness of doubly refracting crystal required to introduce a path b) difference of $\frac{\lambda}{2}$ between the ordinary ray and extraordinary ray when $\lambda = 6000 A^0$, (9+4) $\mu_o = 1.55, \ \mu_e = 1.54.$
- Describe Anderson's bridge experiment to determine the value of self inductance 12. a) with necessary theory.
 - Give the comparison between LCR series and parallel resonance circuit. (9+4)b)

P.T.O.

- 13. a) Derive an expression for current, impedance and resonant frequency when an alternating emf is applied to LCR parallel circuit.
 - b) An inductance of 10H is connected in series with a resistance of 50Ω to a 220v, 50Hz ac source. Calculate the value of the capacitor to be connected in series to make the power factor unity. (9+4)